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SUMMARY

In this paper, indirect radial basis function networks (IRBFN) proposed by Nam and Tranh (Neural
Networks 2001; 14(2):185–199; Appl. Math. Modelling 2003; 27:197–220) are incorporated into the
differential quadrature (DQ) approximation of derivatives. For simplicity, this new variant of RBF-DQ
approach is named as iRBF-DQ method. The proposed approach is validated by its application to solve
the one-dimensional Burger’s equation, and simulate natural convection in a concentric annulus by solving
Navier–Stokes equations. It was found that as compared to the benchmark data, the iRBF-DQ approach
can provide more accurate results than the original RBF-DQ method. Copyright q 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

There are many numerical methods for solving partial differential equations (PDEs) in engineering
and science. The conventional methods include finite difference (FD) method, finite element (FE)
method, and finite volume (FV) method. These methods usually use the low-order polynomial
to approximate the derivatives in PDEs. Therefore, they are classified as low-order methods. To
achieve acceptable accuracy, the low-order methods have to use a large number of grid points.
On the contrary, their high order counterparts, such as the differential quadrature (DQ) method
[1, 2], use just a few grid points to obtain accurate numerical results. However, the high-order
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polynomial-based methods may encounter the polynomial oscillation problem, which makes the
computation oscillatory, sometimes even diverged.

On the other hand, it was found that radial basis functions (RBFs) are a powerful tool for
function approximation [3], especially for interpolation of scattered data points. Due to favourable
properties of RBF approximation such as high accuracy and meshless feature, many researchers
have made effort to apply it to solve PDEs. The first trial of such exploration was made by Kansa
in 1990 [4, 5]. He solved some hyperbolic, parabolic, and elliptic PDEs using multiquadric (MQ)
RBFs, and found that RBFs could yield a very accurate solution for parabolic and elliptic PDEs.
After that, the RBFs attract more and more attentions on solving PDEs as a global method, and
a series of papers were published in the literature [6–12]. Note that the Kansa’s RBF method is
actually based on the function approximation. To approximate derivatives by using RBFs, Shu and
his co-workers [13–15] proposed the RBF-DQ method, which combines the DQ approximation
of derivatives and function approximation of RBF. Previous applications showed that RBF-DQ is
an efficient method to solve linear and nonlinear PDEs.

Recently, Nam and Tranh [16, 17] proposed the indirect radial basis function networks (IRBFN).
They found that the IRBFN performs better than the conventional RBF method. In the conventional
RBF method, the RBF approximation is directly applied to the solution function. As such, any
derivative of the solution function can be obtained by differentiating the RBF expression. In the
IRBFN approach, the RBF approximation is applied to a targeted derivative (first order or second
order) of the solution function. Consequently, the solution function is obtained by integrating the
derivative with the RBF expression. Obviously, as compared to the conventional RBF method, the
procedure of IRBFN is equivalent to use a new set of RBFs which are derived from integration of
original RBFs. The new set of RBFs may have better approximation for the targeted derivative.
This has been demonstrated by Nam and Tranh [16, 17].

It is interesting to investigate the performance of RBF-DQ method for the solution of PDEs when
the solution function is approximated by integrated radial basis functions (iRBF). This motivates the
present paper. In this paper, the RBF-DQ method with integrated radial basis functions, iRBF-DQ
for short, is presented and validated by its application to solve one-dimensional Burger’s equation
and two-dimensional Navier–Stokes equations. Numerical results do show that iRBF-DQ method
has a better accuracy than its original version of RBF-DQ for solution of PDEs.

2. INTEGRATED RADIAL BASIS FUNCTION-BASED DIFFERENTIAL QUADRATURE
(iRBF-DQ) METHOD

iRBF-DQ method is developed from the radial basis function-based differential quadrature (RBF-
DQ) method. In the following, we will firstly give a brief description on the RBF-DQ method.

2.1. RBF-DQ method

According to RBF-DQmethod [13–15], the derivatives of a smooth function u(x) are approximated
by a weighted linear sum of the functional values at neighbouring mesh nodes. For example, the
RBF-DQ approximation for the nth order derivative of u(x) with respect to x , u(n)

x , at the i th node
xi can be written as

u(n)
x (xi ) =

N∑
j=1

w
(n)
i, j u(x j ) (1)
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where N is the number of nodes used in the supporting region, w
(n)
i, j are the DQ weighting

coefficients. The determination of weighting coefficients is based on the analysis of function
approximation and the analysis of a linear vector space.

In the usual procedure of RBF-DQ method, it is supposed that there are N nodes, x1, . . . , xN ,
in the support domain of point x . Then the approximation of u by RBFs can be written as

u(x)=
N∑

k=1
�k�k(x) (2)

where �k(x) is a RBF, and �k is the coefficient for �k(x). The three typical forms of �k(x) are
given as below

�k(x)= (r2k + c2)1/2 (multiquadric,MQ)

�k(x)= (r2k + c2)−1/2 (inverse multiquadric, IMQ)

�k(x)= e−cr2 (Gaussian,GS)

where the positive constants c are called shape parameters, r the distance between point x and xk , i.e.

r = |x − xk | (3)

Equation (2) has N freedoms, which can be considered to construct an N -dimensional linear vector
space VN . Obviously, the RBFs {�k(x), k = 1, . . . , N } in Equation (2) is a set of base functions
in VN , which can be taken as the base vectors. Therefore, the weighting coefficients w

(n)
i, j can

be determined using the same way as in the conventional DQ method. Substituting all the base
functions into Equation (1) leads to

�(n)�k(xi )

�x (n)
=

N∑
j=1

w
(n)
i, j �k(x j ) (4)

The above equation can be further put in the matrix form,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�(n)�1(xi )

�x (n)

�(n)�2(xi )

�x (n)

...

�(n)�N (xi )

�x (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
� →

� (xi )
�x

=

⎡
⎢⎢⎢⎢⎢⎣

�1(x1) �1(x2) · · · �1(xN )

�2(x1) �2(x2) · · · �2(xN )

. . .

�N (x1) �2(x2) · · · �N (xN )

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
[A]

⎡
⎢⎢⎢⎢⎢⎢⎣

w
(n)
i1

w
(n)
i2

...

w
(n)
i N

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
→
wi

(5)
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972 C. SHU AND Y. L. WU

According to the theory of RBF approximation, we know that the matrix [A] could be invertible

if the appropriate � is chosen. So, the vector ⇀
w

(n)

i can be obtained by,

⇀
w

(n)

i =[A]−1 �(n)⇀
�(xi )

�x (n)
, i = 1, . . . , N (6)

2.2. iRBF-DQ method with polynomial term

According to the work of Nam and Tranh [16, 17], if the second-order derivative u′′(x) is approx-
imated by the original RBFs, i.e.

u′′(x)=
N∑

k=1
�k�k(x) (7)

then the first-order derivative u′(x) can be obtained by integration, which is written as

u′(x)=
∫

u′′(x) dx =
N∑

k=1
�k Hk(x) + C2 (8)

Similarly, the function u is obtained as

u(x)=
∫

u′(x) dx =
N∑

k=1
�k Hk(x) + C2x + C1 (9)

Here Hk(x) and Hk(x) are the iRBFs, and �k is the coefficient for Hk(x) and Hk(x), C1 and C2
are the constants of integration.

It is found that the multiquadric radial basis function (MQ-RBF) is the best performer in
approximation of function and its derivatives. Therefore, in this paper, we only consider the MQ-
RBF. The expression for the integrated MQ-RBF, according to Nam and Tranh [16, 17], can be
written as:

H(x)=
∫

�(x) dx = x
√
x2 + c2

2
+ c2

2
ln(x +

√
x2 + c2) (10)

H(x)=
∫

H(x) dx = (x2 + c2)3/2

6
+ c2x

2
ln(x +

√
x2 + c2) − c2

2

√
x2 + c2 (11)

It is clear that the approximation by Equation (9) is actually the following form:

u(x)=
N∑

k=1
�k Hk(x) + P(x) (12)

where P(x) is the polynomial with P(x)=C2x + C1.
In the work of Nam and Tranh [16, 17], the weights �k and the constants of integration C1 and

C2 are determined by minimizing the sum of squared errors which is defined as

J = sum of squared errors=
m∑
i=1

[
u(xi ) −

N∑
k=1

�k Hk(xi ) − C2xi − C1

]2
(13)
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where m is the number of the sample points, u(xi ) is the function value at xi . By setting

�J
��k

= 0, k = 1, . . . ,m,
�J
�C1

= 0,
�J
�C2

= 0

we can get an algebraic equation system for �k and C1,C2. Nam and Tranh used the singular
value decomposition (SVD) method to solve this equation system. After getting the solution for the
coefficients �k and constants C1,C2, the second and first-order derivatives as well as the function
can be obtained by Equations (7)–(9).

Under the frame of RBF-DQ method, the approximation of derivatives is given by Equation (1).
The only task here is to find a set of basis functions to determine the DQ weighting coefficients
w

(n)
i, j . In the present iRBF-DQ method, the second-order integrated MQ-RBFs Hk(x) are used as

base functions. Unlike the IRBFN method [16, 17] in which the coefficients are determined by
SVD, in our method, the coefficients in Equation (12) are determined directly by collocation at N
nodes within the support domain. From Equation (12), it is found that there are N + 2 unknown
coefficients to be determined but only N equations are available. Therefore, it is not a well-posed
problem. To make the equation system be a closed one, the following constraints are enforced:

N∑
k=1

�k = 0 (14)

N∑
k=1

�k xk = 0 (15)

As a result, we can get

�1 =−
N∑

k=2
�k (16)

N∑
k=1

�k xk = 0⇒ �1x1 +
N∑

k=2
�k xk = 0 ⇒

N∑
k=2

�k(xk − x1) = 0

⇒ �2(x2 − x1) +
N∑

k=3
�k(xk − x1) = 0 ⇒ �2 = −

N∑
k=3

�k
xk − x1
x2 − x1

(17)

Substituting Equation (16) into Equation (12) gives

u(x) = �1H1(x) +
N∑

k=2
�k Hk(x) + P(x)

=
N∑

k=2
�k[Hk(x) − H1(x)] + P(x)

= �2[H2(x) − H1(x)] +
N∑

k=3
�k[Hk(x) − H1(x)] + P(x) (18)

Substituting Equation (17) into Equation (18) gives

u(x)=
N∑

k=3
�k

{
[Hk(x) − H1(x)] − xk − x1

x2 − x1
[H2(x) − H1(x)]

}
+ C2x + C1 (19)
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The number of unknowns in Equation (12) is now reduced to N , because constants �1 and �2
have been removed by using Equations (16) and (17). As no confusion rises, C1 and C2 can be
replaced by �1 and �2, and Equation (19) can be re-written as

u(x)=
N∑

k=3
�k

{
[Hk(x) − H1(x)] − xk − x1

x2 − x1
[H2(x) − H1(x)]

}
+ �2x + �1 (20)

By setting

gk(x)=
{
[Hk(x) − H1(x)] − xk − x1

x2 − x1
[H2(x) − H1(x)]

}
(21)

Equation (20) can be further written as

u(x)= �1 + �2x +
N∑

k=3
�kgk(x) (22)

The form of Equation (22) constructs an N -dimensional linear vector space VN . A set of base
functions in VN can be taken as

q1 = 1, q2 = x, qk(x)= gk(x), k = 3, . . . , N (23)

Using the same procedure as in the original RBF-DQ method (described in Section 2.1), the
weighting coefficients of the nth order derivative of u(x) can be determined. Take the first-order
derivative as an example. The matrix form of the weighting coefficients can be written as

⇀
q

(1)
i =[G]⇀

w
(1)
i (24)

where

⇀
q

(1)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

g(1)
3 (xi )

...

g(1)
N (xi )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [G] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

x1 x2 · · · xN

g3(x1) g3(x2)
. . . g3(xN )

...
... · · · ...

gN (x1) gN (x2) . . . gN (xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
→
w

(1)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
i1

w
(1)
i2

w
(1)
i3

...

w
(1)
i N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then the weighting coefficients for the first-order derivative can be obtained by the following
equation:

⇀
w

(1)
i =[G]−1⇀

q
(1)
i (25)

The weighting coefficients for the nth order derivative w
(n)
i, j can be obtained in the same way.

2.3. iRBF-DQ method without polynomial term

One of the advantages of RBF-DQ method is that, we can calculate the DQ weighting coefficients
w

(n)
i, j as long as we can find N base functions in VN , and construct a brand new RBF-DQ variant.
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In the current iRBF-DQ method, the approximation of u by iRBF Hk(x) without polynomial term
can be written as

u(x)=
N∑

k=1
�k Hk(x) (26)

By comparing Equation (12) with Equation (26), it is found that the polynomial term P(x)
appended in Equation (12) (P(x)=C2x +C1) is deleted. This brings a great convenience into the
computation.

It is found that Equation (26) has N freedoms, which can be considered to construct an N -
dimensional linear vector space VN . Obviously, the iRBFs {Hk(x), k = 1, . . . , N } in Equation (26)
form a set of base functions in VN . Therefore, the weighting coefficients w

(n)
i, j can be determined

using the same way as in the previous sections, and can be written as

⇀
w

(n)

i = [B]−1 �(n)
⇀

H(xi )

�x (n)
, i = 1, . . . , N (27)

where

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1(x1) H1(x2) · · · H1(xN )

H2(x1) H2(x2) · · · H2(xN )

. . .

HN (x1) H2(x2) · · · HN (xN )

⎤
⎥⎥⎥⎥⎥⎥⎦

3. APPLICATION TO MODEL PROBLEMS

With the derivative approximation, the iRBF-DQ method can be used to solve the PDEs. The
proposed two versions of iRBF-DQ method are first validated by solving the one-dimensional
Burger’s equation, which is written as

�u
�t

+ u
�u
�x

= �
�2u
�x2

, x ∈ [0, 1], t ∈ [0, T ] (28)

with initial condition

u(x, 0) = f (x) (29)

where � is a constant, T is a specified time. To obtain the analytical solution of Equation (28) for
comparison purpose, by using the following transformation:

u(x, t) = − 2 · � · �w(x, t)

�x

/
w(x, t) (30)

f (x)= − 2 · � · dg(x)

dx

/
g(x) (31)
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976 C. SHU AND Y. L. WU

Equation (28) can be reduced to a linear heat conduction equation as follows:

�w

�t
= �

�2w
�x2

(32)

with w(x, 0) = g(x).
For the test case here, f (x) is chosen as

f (x)= − 2�
v1� cos(�x) + 1

2v2� cos( 12�x)

v1 sin(�x) + v2 sin( 12�x) + v3
(33)

Then the analytical solution of Equation (32) can be expressed as

w(x, t) = v1 · exp(−��2t) · sin(�x) + v2 · exp(−0.25��2t) · sin(0.5�x) + v3 (34)

where v1, v2, v3 are the constants and chosen as v1 = 0.2, v2 = 0.1, v3 = 0.3, �= 0.01 in the present
work.

The two versions of the iRBF-DQ formulation, that is, iRBF-DQ method with and without
polynomial term, are used to discretize Equation (28). The resulting ordinary differential equation
is solved by the fourth-order Runge–Kutta scheme.

It is well known that the accuracy of RBF approximation depends heavily on the choice of the
shape parameter c. In our work, we take the expression of c as follows:

c= c0 · �xi (35)

where �xi is the shortest distance between the node i and its neighbouring nodes. To some extent,
�xi represents the information of the nodal distribution in the domain. c0 is a dimensionless shape
parameter, which is irrelevant of �xi . In this paper, different node distributions are considered to
determine the valid range of the shape parameter c0 for iRBF-DQ with and without polynomial
term. The original RBF-DQ method proposed in References [13–15] is also applied to solve
the same problem for the purpose of comparison. In present computation, two kinds of node
distributions are adopted. They are:

(1) Type 1: 17 points are distributed on the line uniformly;
(2) Type 2: 17 points are distributed according to Reference [18], i.e.

xi = 1

2

(
1 − cos

i − 1

N − 1
�

)
L , i = 1, 2, . . . , N (36)

where L is the length of the computational domain 0�x�L . Here L = 1.

Figures 1 and 2 show the curves of the average relative errors err against different c0 for the
three RBF-DQ methods with above two kinds of node distributions. It was found that for all the
three methods, a very small or a very large c0 would lead a large numerical error. It was also
found, in this computation, that when c0 is larger than a critical value, such as when c0>13 for
all the three methods with uniformly distributed points, the numerical errors increase. The reason
may be due to the ill-condition of resultant equation system for the weighting coefficients.

From the observation of Figures 1, 2, it is found that the numerical results of present iRBF-DQ
methods are more accurate than those of the original RBF-DQ method. According to Nam and
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Figure 1. Average relative error vs c0 for solution of Burger equation with use of uniform grid.

Figure 2. Average relative error vs c0 for solution of Burger equation with use of non-uniform grid.

Tranh [16, 17], this may be due to the fact that the process of integration of RBF has the property
of damping out or at least containing the inherent inaccuracy, while the process of differentiation
may magnify the inaccuracy.

It is also found that for the two versions of iRBF-DQ method, the accuracy of the solution is at
the same level. For some cases, such as uniform mesh, the performance of the iRBF-DQ method
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Table I. Unsteady solution of Burger’s equation (uniform mesh, c0 = optimal value).

Computational error

iRBF-DQ with iRBF-DQ without RBF-DQ
t x polynomial (c0= 9) polynomial (c0= 8) (c0= 10) Analytical

0.1 0.0 −0.051924 −0.051922 −0.051912 −0.051923
0.5 −0.003897 −0.003897 −0.003897 −0.003897
1.0 0.031128 0.031130 0.031133 0.031127

0.5 0.0 −0.050289 −0.050225 −0.050118 −0.050215
0.5 −0.003917 −0.003917 −0.003917 −0.003917
1.0 0.029984 0.030034 0.030063 0.029995

1.0 0.0 −0.048473 −0.048244 −0.047946 −0.048168
0.5 −0.003939 −0.003939 −0.003939 −0.003939
1.0 0.028561 0.028761 0.028854 0.028638

Table II. Unsteady solution of Burger’s equation (nonuniform mesh, c0= optimal value).

Computational error

iRBF-DQ with iRBF-DQ without RBF-DQ
t x polynomial (c0= 6) polynomial (c0= 5) (c0= 11) Analytical

0.1 0.0 −0.051833 −0.051917 −0.051467 −0.051923
0.5 −0.003898 −0.003898 −0.003896 −0.003897
1.0 0.031168 0.031196 0.030903 0.031127

0.5 0.0 −0.049657 −0.050196 −0.047826 −0.050215
0.5 −0.003917 −0.003917 −0.003920 −0.003917
1.0 0.030312 0.030536 0.028768 0.029995

1.0 0.0 −0.047188 −0.048205 −0.044202 −0.048168
0.5 −0.003939 −0.003939 −0.003952 −0.003939
1.0 0.029337 0.029878 0.026513 0.028638

without polynomial term is even better than the iRBF-DQ with polynomial term. This implies
that for the iRBF-DQ method, the constants of integration in Equations (8) and (9) may not be
necessary although they cannot be avoided in the IRBFN method. It seems that RBF-DQ method
has more flexibility than other RBF-related schemes to approximate the derivatives.

Tables I and II list the computational results obtained by the two iRBF-DQ methods as well as
the original RBF-DQ method with their optimal values of c0. The corresponding analytical results
are also included in the table for comparison. The time step size was chosen as 0.001. Clearly, the
numerical solutions of the iRBF-DQ method are very accurate. In the next section, the iRBF-DQ
method will be applied to solve more complex flow problems.
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4. SIMULATION OF NATURAL CONVECTION IN CONCENTRIC
ANNULI BY iRBF-DQ METHOD

In this section, we will apply the iRBF-DQ method to simulate the natural convection in an annulus
between two concentric circular cylinders.

In the present work, we only apply the iRBF-DQ method in the radial direction. The node
distribution along the radial direction is taken the same as shown in Equation (36) so that we
can use the optimal value of c0 obtained from last section. The uniform mesh is taken along the
circumferential direction and the derivatives in the � direction are discretized by the second-order
finite difference scheme. The two iRBF-DQ versions introduced previously, that is, iRBF-DQ with
polynomial term and iRBF-DQ without polynomial term, are used to discretize all the derivatives
in the r direction. According to the test study for solution of Burger’s equation in this work,
the dimensionless shape parameter c0 for iRBF-DQ with polynomial term and iRBF-DQ without
polynomial term are taken as 5.0 and 5.0, respectively.

4.1. Governing equations and numerical discretization

The governing equations in terms of the vorticity-stream function formulation can be written in
the cylindrical coordinate system as
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where u = 1
r

��
��

, v = − ��
�r

The dimensionless parameters appeared in the above equations are the Prandtl number,
Pr= �Cp/k, the Rayleigh number, Ra =Cp	0g
L

3(Ti − To)/kv, where Ti and To are the tem-
perature on the inner and outer cylinder, respectively. The inner cylinder is assumed to be heated.
The length of the cylinders is assumed to be infinite, thus the flow and heat transfer in the annulus
are regarded as two dimensional. The boundary conditions on two impermeable isothermal walls
are given by

�= u = v = 0, �= �2�
�r2

, T = 1 (40)

on the inner cylinder and

�= u = v = 0, �= �2�
�r2

, T = 0 (41)

on the outer cylinder. The periodic condition is implemented in the � direction, which can be
written as

f (r, 2�) = f (r, 0)

where f = (�, u, v,�, T )
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As mentioned earlier, in this work, the iRBF-DQ method is only applied in the r direction. In
the � direction, the derivatives are discretized by the conventional second-order finite difference
scheme. As a result, Equations (37)–(39) can be discretized at a mesh point (�i , r j ) as

M∑
k=1

b j,k�i,k + 1

r j

M∑
k=1

a j,k�i,k + �i+1, j − 2�i, j + �i−1, j

r2j��2
= �i, j (42)

d�i, j

dt
+ ui, j
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r j
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(43)

dTi, j
dt

+ ui, j
M∑
k=1

a j,kTi,k + vi, j

r j

Ti+1, j − Ti−1, j

2��

=
M∑
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b j,kTi,k + 1

r j

M∑
k=1

a j,kTi,k + Ti+1, j − 2Ti, j + Ti−1, j

r2j��2
(44)

where M is the number of mesh points in the r direction, a j,k and b j,k are the iRBF-DQ weighting
coefficients of the first and second-order derivatives with respect to r , which can be computed as
shown in the previous section.

In a similar manner, the derivatives in the boundary condition equations (40) and (41) can be
discretized by the iRBF-DQ method. The time derivatives in Equations (42)–(44) can be discretized
by Euler implicit scheme. The resultant algebraic equations are solved by SOR method.

4.2. Numerical results and discussion

Both iRBF-DQ methods are applied to do the simulation. The computed values of average equiv-
alent conductivities are used to compare the present results with available data in the literature.
The average equivalent conductivity is defined as [19]

keqi = − ln(rr)

2�(rr − 1)

∫ 2�

0

�T
�r

· d� (45)

for the inner cylinder, and

keqo = − rr · ln(rr)
2�(rr − 1)

∫ 2�

0

�T
�r

· d� (46)

for the outer cylinder. Table III compares the computed keqi and keqo by iRBF-DQ method for the
case of Pr= 0.71, rr= 2.6 and Rayleigh numbers of 102, 103, 104, 5 × 104. The results of RBF-
DQ method [15] as well as the results of Shu [19] are also included in the table for comparison.
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Table III. Comparison of average equivalent heat conductivity.

Ra= 102 Ra= 103 Ra= 104 Ra= 5 × 104

Methods keqi keqo keqi keqo keqi keqo keqi keqo

iRBF-DQ with polynomial 1.001 1.001 1.082 1.082 1.977 1.977 2.957 2.957
iRBF-DQ without polynomial 1.001 1.001 1.082 1.082 1.977 1.977 2.956 2.956
RBF-DQ [15] 1.001 1.001 1.082 1.082 1.976 1.976 2.953 2.954
Reference [19] 1.001 1.001 1.082 1.082 1.979 1.979 2.958 2.958

(a) (b)

Figure 3. Streamlines and isotherms for natural convection in a concentric annulus obtained by iRBF-DQ
without polynomial (Ra= 5 × 104, Pr= 0.71, rr = 2.6): (a) streamlines; and (b) isotherms.

The results of Shu [19] were obtained by using the polynomial based differential quadrature (PDQ)
and FDQ methods [2]. They are from the grid-independent study, and can be considered as the
benchmark solution. The mesh size used in the present computation is 61×17 (61 in the � direction
and 17 in the r direction). Note that the number of mesh points used in the � direction is much
larger than that used in the r direction. This is because the RBF-DQ is a global method and it
can obtain very accurate results by using a considerably small number of mesh points. In contrast,
the second-order difference scheme used in the � direction is a low-order method. To achieve the
same order of accuracy as the RBF-DQ method, a much larger number of grid points is needed
in the � direction. It can be obviously observed from Table III that the present results of both
iRBF-DQ versions agree very well with the benchmark solution of Shu [19]. The present results are
more accurate than those of the original RBF-DQ method [15]. The computed average equivalent
conductivities for the inner and outer cylinders are the same. This confirms the theoretical analysis.
Since there is no energy loss in the whole system, the theoretical average equivalent conductivities
for the inner and outer cylinders should be the same. The flow patterns obtained by both iRBF-DQ
versions are the same. Figure 3 shows the streamlines and the isotherms of Ra= 5× 104 obtained
by iRBF-DQ without polynomial term.
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It is also found in this paper that the present iRBF-DQ method requires the same level of
computational efforts (such as memory requirement and CPU time) as the RBF-DQ method does
if the same mesh size is used. It has been proven in our previous paper [20] that the RBF-DQ
method, as a kind of global method, has much better computational efficiency as compared with
PDQ method [2]. Therefore, we conclude that the present iRBF-DQ method is better than the
polynomial based global methods such as PDQ in terms of efficiency. This is because it overcomes
the ‘oscillation’ problems which are inherent in high-order polynomial approximation schemes.

5. CONCLUSIONS

The iRBF-DQ method, which uses iRBFs to construct an N -dimensional linear vector space VN
to obtain the weighting coefficients of derivative approximation, is presented in this paper. The
concept of the iRBF is from the work of Nam and Tranh [16, 17]. The major advantage of the iRBF-
DQ method is its easy implementation, and flexibility of choosing different iRBFs to construct
different iRBF-DQ versions. From solution of one-dimensional Burger’s equation and simulation
of natural convection in a concentric annulus by solving Navier–Stokes equations, it was found
that the numerical results obtained by the iRBF-DQ method agree very well with exact value or
available data in the literature. The numerical examples showed that the present method is more
accurate than the original RBF-DQ method, while its computational efficiency is kept the same
level. It can be recommended that the iRBF-DQ is a good candidate for an accurate approximation
of a function and its derivatives, as well as for solving PDE, such as Navier–Stokes equations.

NOMENCLATURE

ai j , bi j iRBF-DQ weighting coefficients of the first and second-order derivatives
c shape parameter in RBF approximation
c0 dimensionless shape parameter
C1,C2 constants of integration
Cp specific heat at constant pressure
g gravitational acceleration
H, H integrated radial basis functions
k thermal conductivity
keqi, keqo average equivalent heat conductivity for inner cylinder and outer cylinder
Pr Prandtl number, Pr= �Cp/k
rr radius ratio, rr = L/2R
R radius of inner cylinder
Ra Rayleigh number, Ra =Cp	0g
L

3(Ti − To)/kv
T temperature
Ti, To dimensionless temperature on the inner and outer cylinders
u component of velocity in the r direction
v component of velocity in the � direction
wi j weighting coefficients in DQ method


 thermal expansion coefficient
� radial basis function, �(r, ri ) =√(r − ri )2 + c2 in MQ-RBF
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� coefficient for �
� viscosity
�k coefficient for � in iRBF-DQ
� kinematical viscosity
	0 reference density
� vorticity
� stream function

Acronyms

DQ differential quadrature method
FD finite difference
FE finite element
FV finite volume
iRBF-DQ integrated radial basis functions-based differential quadrature
IRBFN integrated radial basis function networks
MQ-RBF multiquadric radial basis function
PDE partial differential equation
PDQ polynomial-based differential quadrature
RBF radial basis function
RBF-DQ DQ method with RBF as the base function
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